Controlled Impact Demonstration

filed under | aviation | accident


The Controlled Impact Demonstration (or colloquially the Crash In the Desert) was a joint project between NASA and the Federal Aviation Administration (FAA) aimed at acquiring data, as well as demonstrating and testing new technologies, with the intent of improving occupant crash survivability, by crashing a Boeing 720 aircraft. The tests involved the efforts of NASA Ames Research Center, Langley Research Center, Dryden Flight Research Center, the FAA, and General Electric, and required more than 4 years of work before the test occurred. The aircraft was remotely controlled for the tests, and numerous test runs were undertaken prior to performing the actual impact. The impact test flight occurred on December 1, 1984, proceeding generally according to plan, and resulting in a spectacular fireball which required more than an hour to extinguish. FAA investigators estimated that 2325% of the aircraft's full complement of 113 people could have survived the crash. Time from slide-out to complete smoke obscuration for the forward cabin was five seconds; for the aft cabin, it was 20 seconds. Total time to evacuate was 15 and 33 seconds respectively, accounting for the time necessary to reach and open the doors and operate the slide. Investigators labeled their estimate of the ability to escape through dense smoke as "highly speculative". As a result of analysis of the crash, the FAA instituted new flammability standards for seat cushions which required the use of fire-blocking layers, resulting in seats which performed better than those in the test. They also implemented a standard requiring floor proximity lighting to be mechanically fastened, due to the apparent detachment of two types of adhesive-fastened emergency lights during the impact. Federal aviation regulations for flight data recorder sampling rates for pitch, roll and acceleration were found to be insufficient. NASA concluded that the impact piloting task was of an unusually high workload, which might have been reduced through the use of a heads-up display, the automation of more tasks, and a higher-resolution monitor. They also recommended the use of a microwave landing system to improve tracking accuracy over the standard ground radar provided by an instrument landing system (in practice, the Global Positioning System-based Wide Area Augmentation System came to fulfill this role). [READ THE REST OF THIS ARTICLE] is not affiliated with or endorsed by wikipedia. wikipedia and the wikipedia globe are registered trademarks of
article content reproduced in compliance with wikipedia's copyright policy and gnu free documentation license
view our privacy policy and terms of service here